论文浅尝 | Global Relation Embedding for Relation Extraction

 

链接:https://arxiv.org/abs/1704.05958

Introduction

在关系抽取任务中,通常采用远程监督的方式自动生成数据集。由于实体对间可能存在多关系,生成的数据集往往存在大量噪音。本文对文本中的关系表述(textual relation)和知识库中的关系(kb relation)进行了共现统计,利用全局统计的信息训练 embedding,使模型能更加鲁棒地应对训练噪音的问题。

继续阅读“论文浅尝 | Global Relation Embedding for Relation Extraction”