领域应用 | 英文抗生素药物医学知识图谱 IASO1.0 版发布 线上试用正式启动

本文转载自公众号:PKU自然语言处理前沿。

近日,由北京大学互联网信息工程研发中心(CIRE)开发的英语医学知识图谱英文抗生素药物医学知识图谱IASO1.0发布,面向公众正式开放试用。IASO是利用自然语言处理与文本挖掘技术,基于大规模医学文本数据,以人机结合的方式研发的英文药物医学知识图谱。

继续阅读“领域应用 | 英文抗生素药物医学知识图谱 IASO1.0 版发布 线上试用正式启动”

技术动态 | 知识图谱的策展

作者:Jiaoyan Chen, Senior Researcher, Department of Computer Science, University of Oxford, Research interests: Knowledge Base, Knowledge-based Learning, Machine Learning Explanation.

知识图谱在众多的领域中发挥了重要作用,比如聊天机器人,自然语言理解,常识推理,数据分析,机器学习等。然而,目前主流的常识知识图谱,如Wikidata和DBpedia,都存在质量管理,维护更新,一致性等方面的挑战。作为从多知识图谱的知识来源,维基百科的知识本身就存在2.8%的错误率 [1];而知识的提取、转化和创建过程也存在出现错误的可能。随着时间的推移和不同知识的融合,知识需要不断更新和维护,以确保知识的覆盖率,准确性和一致性。类似于数据策展 [8],知识图谱的策展(Knowledge GraphCuration)旨在知识图谱(知识库)的管理和维护,解决包括知识的填充(Population),知识的标准化(Canonicalization),错误知识的检测(Detection)和修复(Repair),知识的一致性(Consistency)维护等问题。

继续阅读“技术动态 | 知识图谱的策展”

论文浅尝 | 知识图谱推理中表示学习和规则挖掘的迭代学习方法

 

文章转载自公众号

浙大KG , 作者 张文

作者:张文,浙江大学在读博士,研究方向为知识图谱的表示学习,推理和可解释。

本文是我们与苏黎世大学以及阿里巴巴合作的工作,发表于WWW2019,这篇工作将知识图谱推理的两种典型方法,即表示学习和规则进行了结合,提出了IterE,并实现了两者的优势互补。

继续阅读“论文浅尝 | 知识图谱推理中表示学习和规则挖掘的迭代学习方法”